Los dínamos se dividen en tres clases, seún la construcción de su inductor y sus conexiones: dínamo SHUNT o excitación en derivación, dinamo SERIE o exitacionen en serie y dinamo compound o con exitacion compuesta.
El dínamo shunt, tiene sus bobinas inductoras conectadas en paralelo con el inducido. Las bobinas inductoras de los dínamosshunt están compuestas de un gran número de vueltas de alambre de pequeño diámetro y con una resistencia suficiente para que puedan estar permanentemente conectadas a través de las escobillas y soportar todo el voltaje del inducido durante el funcionamiento. Por consiguiente, la corriente que circula por esas bobinas depende de su resistencia y del voltaje del inducido.
El generador con excitación shunt suministra energía eléctrica a una tensión aproximadamente constante, cualquiera que sea la carga, aunque no tan constante como en el caso del generador con excitación independiente. Cuando el circuito exterior está abierto, la máquina tiene excitación máxima porque toda la corriente producida se destina a la alimentación del circuito de excitación; por lo tanto, la tensión en bornes es máxima. Cuando el circuito exterior está cortocircuitado, casi toda la corriente producida pasa por el circuito del inducido y la excitación es mínima, la tensión disminuye rápidamentc y la carga se anula. Por lo tanto, un cortocircuito en la línea no compromete la máquina, que se desexcitaautomáticarnente, cesando de producir corriente; esto es una ventaja sobre el generador de excitación independiente en donde un cortocircuito en la línea puede producir graves averías en la máquina, al no existir este efecto de desexcitación automática.
Los generadores shunt presentan el inconveniente de qu.e no pueden excitarse si no están en rnovimiento, ya que la excitación procede de la misma máquina.
El circuito de excitación no lleva fusibles por las razones ya indicadas en el caso del generador de excitación independiente; en este circuito no es necesario un interruptor porque para excitar la máquina basta con ponerla en marcha y para desexcitarla no hay más que pararla. El amperímetro en el circuito de excitación puede también suprimirse, aunque resulta conveniente su instalación para comprobar si, por alguna avería, el generador absorbe una corriente de excitación distinta de la normal.
Para la regulación de la tensión a las distintas cargas, se dispone también un reostato de campo, provisto, como en el caso anterior, de borne de cortocircuito.
Cuando se dispone permanentemente de tensión en las barras especiales generales, muchas veces se prefiere tomar la corriente de excitación de estas barras y no de las escobillas del generador.
Si, al poner en marcha el generador, hay tensión en las barras generales, la máquina se comporta como generador de excitación independiente; si no hay tensión, como generador shunt.
Para la puesta en marcha, debe cuidarse de que el interruptor general esté abierto y que el reostato de campo tiene todas las resistencias intercaladas en el circuito. En estas condiciones, se pone en marcha la máquina motriz, aumentando paulatinamente su velocidad hasta que ésta alcance su valor nominal; al mismo tiempo, aumenta la corriente de excitación y, por lo tanto, la tensión en los bornes del generador, lo que indicará el voltímetro. Si en la red no existen baterías de acumuladores, se acopla a ella el generador a una tensión algo inferior a la nominal, por las razones ya indicadas al estudiar el generador de excitación independiente; para conseguir esta tensión, se maniobra el reostato de campo paulatinamente, quitando resistencias. No resulta conveniente acoplar el generador a la red antes de excitarlo o a una tensión muy baja, porque si la resistencia exterior fuese muy baja (es decir, que la red estuviese en condiciones próximas al cortocircuito), la corriente de excitaciórn sería muy pequeña e insuficiente para excitar la máquina.
De la misma forma que para el caso del generador con excitación independiente, si en la red hubiese baterías de acumuladores, se cerrará el interruptor general, solamente cuando la tensión en bornes de la máquina sea igual a la tensión de la red. Conviene atender a que las baterías de acumuladores no descarguen sobre la máquina, para lo cual es conveniente que el circuito del generador vaya provisto de un interruptor de mínima tensión.
Cuando se necesite parar el generador, se descargará, disminuyendo la excitación por medio del reostato de campo teniendo cuidado de que las baterías no se descarguen sobre el generador y, por Io tanto, manteniendo siempre la tensión nominal. Si no hay baterías acopladas a la red, puede disminuirse la velocidad de la máquina motriz. En cuanto el amperímetro indique una intensidad de corriente nula o casi nula, se abre el interruptor principal, y se para la máquina motriz. Por efecto de la inercia, el gobernador seguirá girando durante algún tiempo y se desexcitará poco a poco; si hubiera necesidad de desexcitarlo rápidamente, se abrirá el circuito de excitación con las debidas precauciones y se frenará el volante de la máquina motriz.
Dínamo Serie:En este tipo de máquina. las bobinas inductoras están conectadas en serie con el inducido y la carga. El bobinado inductor suele estar compuesto de alambre o platina de cobre muy gruesos, de modo que pueda soportar sin recalentarse la corriente de plena carga.
Si no hay ninguna carga conectada a la línea, será imposible que pase ninguna corriente por el arrollamiento inductor en serie y que por consiguiente, la dínamo no podrá desarrollar voltaje. Por lo cual, para que un dínamo serie desarrolle voltaje cuando arranca es preciso que haya alguna carga conectada al circuito de línea.
Dinamo compound
En los dínamos compound, las bobinas inductoras están formadas por arrollamientos en serie y en paralelo, sobre cada polo están conectados dos bobinados distintos.
La bobina inductora shunt está conectada en paralelo. La bobina inductora en serie, estando en serie con el inducido y Ia carga tendrá su intensidad variable según la carga. Por consiguiente estas máquinas tendrán algunas de las características de los dínamos Shunt y de los Serie.
Hemos visto que el voltaje del dínamo shunt tiende a bajar cuando aumenta la carga y que el voltaje del dínamo serie aumenta con la carga. Por consiguiente, diseñando un dínamo compound con las proporciones adecuadas entre los inductores en derivación y en serie, podemos construir una máquina. que mantenga, un voltaje casi constante con cualquier variación de la carga.
El bobinado inductor shunt de una dínamo Compound suele ser el principal y produce la mayor parte, con mucho del flujo inductor. Los bobinados inductores en serie suelen componerse de sólo unas cuantas vueltas, o sea las suficientes para reforzar el campo magnético cuando aumenta la carga y compensar la caída, de voltaje en el inducido y las escobillas. El campo magnético en derivación de estos dínamos puede ajustarse mediante un reóstato en serie con el arrollamiento, también por medio de un shunt en paralelo con las bobinas inductoras en serie. sin embargo, el reóstato de campo shunt de esas máquinas no suele emplearse, por lo general, para hacer frecuentes ajustes en su voltaje, sino que se destina a establecer un ajuste correcto entre las intensidades inductoras en serie en derivación cuando los dínamos se ponen en marcha.
La variación en la intensidad del campo magnético en serie, que compensa la caída de voltaje al variar la carga, hace innecesario el uso frecuente del reóstato de campo shunt, que se hace en los dínamos shunt.
El generador con excitación compound tiene la propiedad de que puede trabajar a una tensión prácticamente constante, es decir, casi independiente de la carga conectada a la red, debido a que, por la acción del arrollamiento shunt, la corriente de excitación tiende a disminuir al aumentar la carga, mientras que la acción del arrollamiento serie es contraria, o sea, que la corriente de excitación tiende a aumentar cuando aumenta la carga. Eligiendo convenientemente ambos arrollamientos puede conseguirse que se equilibren sus efecto siendo la acción conjunta, una tensión constante, cualquiera que se la carga. Incluso, se puede obtener, dimensionando convenientemente el arrollamiento serie, que la tensión en bornes aumente si aumenta la carga, conexión que se denomina hipercompound y que permite compensar la pérdida de tensión en la red, de forma que la tensión permanezca constante en los puntos de consumo.
El generador compound tiene la ventaja, respecto al generador shunt, de que no disminuye su tensión con la carga, y, además, que puede excitarse aunque no esté acoplado al circuito exterior, tal como vimos que sucedía en el generador shunt.
Durante la puesta en marcha, funciona como un generador shunt; una vez conectado a la red, la tensión en bornes del generador shunt, tendería a disminuir si no fuera por la acción del arrollamiento serie, que compensa esta tendencia. Es decir, que el arrollamiento serie sirve para regular la tensión del generador, en el caso de que la resistencia exterior descienda más allá de cierto límite.
Un generador conpound no puede utilizarse para cargar baterías de acumuladores. Si la contratensión de la batería es mayor que la tensión en bornes del generador, la corriente en el circuito tiene el sentido indicado por la flecha de puntos, y por lo tanto, pasa en sentido contrario por la excitación en serie; si esta corriente es mayor que la correspondiente al arrollamiento shunt, estando también invertida la popularidad del inducido, mientras que el sentido de rotación permanece invariable, el generador está en serie con la batería lo que facilita la descarga peligrosa.
Para invertir el sentido de giro sin suprimir el magnetismo remanente, es necesario invertir las conexiones de los dos circuitos de excitación; de esta forma, queda invertida solamente la polaridad de las escobillas.
Para terminar, diremos que el generador compound (igual que sucedía con el generador de excitación independiente), no puede funcionar en cortocircuito porque entonces, la acción del arrollamiento serie puede llegar a ser superior al efecto del arrollamiento shunt, y como consecuencia la corriente en el inducido puede alcanzar un valor de dos a tres veces mayor del normal, con el consiguiente peligro para los arrollamientos de la máquina.
Los generadores compound tienen aplicación en las centrales para tracción eléctrica que precisan de una tensión constante y en todos aquellos casos en que se haya de contar con variaciones bruscas de carga, como sucede en los talleres con grúas de gran potencia, laminadores, etc..., suponiendo que no se disponga de sistemas compensadores, y que se desee la mayor constancia posible para la tensión en las barras colectoras. También puede emplearse en pequeñas instalaciones que precisen de tensión constante, sustituyendo al generador shunt, para evitar una vigilancia continua a causa dc las variaciones dc carga; sin embargo, hay que tener en cuenta que, en este caso, la autorregulación no es perfecta por lo que, en instalaciones de mayor importancia en que se desee una tensión constante sin vigilancia, debe sustituirse el generador compound por otros procedimientos.
Acoplamiento en paralelo de generadores con excitación shunt
En la figura 494 se representa el conexionado de dos generadores con excitación shunt, con 3 voltímetros, uno para cada máquina y otro para medir la tensión de barras. En el caso de más unidades, los esquemas de los circuitos se repiten y las maniobras para el acoplamiento en paralelo son idénticas.
Lo mismo que cuando hablamos de los generadores de excitación independiente, pueden modificarse las conexiones de los voltímetros: en la figura 495 se representa el caso en que cada máquina está provista de su correspondiente voltímetro que, mediante la conveniente conmutación, se utiliza también como voltímetro de barras, y en la figura 496 se expresa la variante con un solo voltímetro para todas las máquinas y para las barras. Las ventajas y los inconvenientes de cada variante, son los mismos que ya indicamos para los generadores de excitación independiente.
Cuando existen en la red, baterías de acumuladores, el circuito de cada generador debe tener intercalado un interruptor automático de mínima intensidad o lo que es preferible, un interruptor de contracorriente. En estos casos, y tal como se expresa en las figuras anteriores se sustituye el interruptor general bipolar por un interruptor unipolar manual y el interruptor automático, también unipolar. En otras variantes de montaje, se conserva el interruptor automático unipolar.
La puesta en marcha de una sola máquina, o la parada de la única máquina que está en funcionamiento, se efectúa de forma idéntica al caso de una sola máquina, que hemos estudiado en un capítulo anterior.
La forma de acoplar en paralelo un generador estando ya otros generadores suministrando energía eléctrica a la red, se efectúa de forma idéntica a lo ya explicado para el caso de generadores con excitación independiente. Únicamente cambia la forma de excitar o desexcitar los generadores que se acoplan en paralelo, de acuerdo con lo dicho en un capítulo anterior al hablar de las características generales de los generadores shunt.
En resumen, se pone en marcha el generador y se cierra el interruptor general cuando su tensión en bornes es igual o algo superior a la de las barras. Se realiza después la distribución de la carga entre los generadores acoplados, teniendo cuidado en maniobrar lentamente los reóstatos de campo para evitar variaciones bruscas de la carga, las cuales originarían variaciones bruscas de la velocidad y, por lo tanto, de la tensión.
Durante el funcionamiento de los generadores acoplados en paralelo, debe cuidarse de que la carga esté distribuida entre todas las máquinas de forma proporcional a su potencia, por lo que se accionará cuidadosamente el reóstato de campo.
La parada de una máquina mientras las demás siguen en funcionamiento se efectúa de la forma ya descrita para el caso de generadores con excitación independiente; es decir, se descarga la máquina gradualmente, por medio del reóstato de campo o variando la velocidad de la máquina motriz y cuando se ha llevado la carga a cero, o casi cero, lo cual será indicado por el amperímetro, se abre bruscamente el interruptor general. Después, se desexcita el generador de la forma ya conocida.
Cuando en las barras colectoras se dispone de una tensión constante, por estar conectada a ellas, por ejemplo, una batería de acumuladores, en vez de tomar la corriente de excitación de las escobillas se toma directamente de las barras. De esta manera, se pasa de la excitación shunt, a la excitación independiente. Con esta disposición se puede efectuar con mayor rapidez el acoplamiento en paraIeIo. Efectivamente, Ios generadores shunt, especialmente si son de gran potencia, son más lentos en excitarse ; si, por el contrario, la excitación se toma directamente de las barras, desde el principio se dispone de la tensión normal en el circuito de excitación y no hay que esperar a que la máquina esté en movimiento; es decir, que el generador se excita rápidamente.
Aún existe otra ventaja y es que se suprimen los riesgos de la inversión del sentido de la corriente. Como contrapartida para desconectar el circuito de excitación hay que tener en cuenta las precauciones que ya se indicaron al hablar de los generadores con excitación independiente ; puede adoptarse el sistema representado en la figura 497; para conectar el generador, se cierra el interruptor común a una escobilla de la máquina y a un polo del circuito de excitación y después es, que cierra el otro polo del circuito de excitación y, de esta manera, el circuito de excitación está recorrido, en el sentido previsto, por la corriente procedente de las barras.
ACOPLAMIENTO EN PARALELO DE GENERADORES CON EXCITACIÓN COMPOUND
En instalaciones que presentan con frecuencia grandes variaciones de carga, por ejemplo, centrales para tracción eléctrica, es preferible emplear generadores con excitación compound, sobre todo, en aquellos casos en que deba mantenerse constante o casi constante la tensión de las barras colectoras.El acoplamiento en paralelo de generadores compound se realiza de forma análoga a la empleada para acoplar generadores shunt. Pero la existencia de un nuevo arrollamiento de excitación, el conectado en serie, provoca una serie de problemas que, por lo general, se solucionan con la denominada barra de compensación, que es un conductor de gran sección (25 a 30 por ciento mayor que el de los conductores principales de la máquina) y, por lo tanto, de pequeña resistencia eléctrica. Esta barra no está en comunicación con el circuito exterior, sino que a ella van conectados todos los arrollamientos de excitación serie, de forma que éstos quedan conectados en paralelo.
Supongamos primero el caso en que las máquinas no tienen barra de compensación. Por un motivo accidental cualquiera, la tensión del generador GI, es mayor que la tensión del generador G2. Por lo tanto, circula una corriente de compensación del generador GI al generador G2, que tiende a invertir el sentido de la corriente suministrada por G2; en el arrollamiento de excitación shunt de G2 no sucede nada, porque la corriente no se invierte, pero sí puede suceder que se invierta la corriente en el arrollamiento de excitación serie de este mismo generador, lo cual significa que el generador G2 trabaja como máquina compound diferencial ya que son opuestos los sentidos de las dos corrientes de excitación. Como resultado, disminuye la corriente total de excitación en G2 y, por lo tanto, disminuye también su tensión en bornes; como consecuencia, aún es mayor la corriente que circula por G2, lo que ocasiona una nueva disminución de la corriente de excitación. Como puede apreciarse, los efectos son acumulativos: cada vez es menor la tensión en los bornes de G2, cada vez es mayor la intensidad de corriente en sentido opuesto al normal. Esta corriente podría alcanzar un valor tal, que la polaridad del generador G2, quedaría invertida, con lo que ambas máquinas estarían acopladas en serie y cerradas prácticamente en cortocircuito, ya que la resistencia eléctrica de los arrollamientos de excitación serie es muy pequeña. En este momento, el valor de la corriente podría resultar muy peligroso para ambas máquinas y para el personal de servicio.
Al disponer la barra de compensación, tal como se indica en la misma figura 498, el exceso de corriente del generador GI se reparte entre los arrollamientos de excitación serie de los dos generadores, en razón inversa a sus resistencias; si por un procedimiento cualquiera, se consigue que las resistencias dé los arrollamientos serie de los dos generadores tengan el mismo valor, la carga se repartirá exactamente entre ambas máquinas ya que la corriente que atraviesa sus arrollamientos serie, es la misma para ambos generadores.
Algunas veces, la excitación shunt de las máquinas se deriva de la barra de equilibrio que une las escobillas positivas (o negativas) y de la barra negativa (o, en su caso, de la positiva); de esta forma, la tensión queda regulada por igual para todas las máquinas.
Un generador eléctrico es todo dispositivo capaz de mantener una diferencia de potencial eléctrico entre dos de sus puntos, llamados polos, terminales o bornes. Los generadores eléctricos son máquinas destinadas a transformar la energía mecánica en eléctrica. Esta transformación se consigue por la acción de un campo magnético sobre los conductores eléctricos dispuestos sobre una armadura (denominada también estator). Si mecánicamente se produce un movimiento relativo entre los conductores y el campo, se generara una fuerza electromotriz (F.E.M.)
Generador de excitación serie
El devanado inductor se conecta en serie con el inducido, de tal forma que toda la corriente que el generador suministra a la carga fluye por igual por ambos devanados.
Dado que la corriente que atraviesa al devanado inductor es elevada, se construye con pocas espiras de gran sección.
Tiene el inconveniente de no excitarse al trabajar en vacío. Así mismo se muestra muy inestable por aumentar la tensión en bornes al hacerlo la carga, por lo que resulta poco útil para la generación de energía eléctrica.
Para la puesta en marcha es necesario que el circuito exterior esté cerrado.
El devanado inductor se conecta en serie con el inducido, de tal forma que toda la corriente que el generador suministra a la carga fluye por igual por ambos devanados.
Dado que la corriente que atraviesa al devanado inductor es elevada, se construye con pocas espiras de gran sección.
Tiene el inconveniente de no excitarse al trabajar en vacío. Así mismo se muestra muy inestable por aumentar la tensión en bornes al hacerlo la carga, por lo que resulta poco útil para la generación de energía eléctrica.
Para la puesta en marcha es necesario que el circuito exterior esté cerrado.
La excitación de un generador en serie se lleva a cabo cuando los devanados de excitación y del inducido se conectan en serie y, por lo tanto la corriente que atraviesa el inducido en este tipo de generador es la misma que la que atraviesa la excitación. Este último devanado, está constituido por pocas espiras con hilo conductor de gran sección, pues la f.e.m. necesaria para producir el campo principal se consigue con fuertes corrientes y pocas espiras
Generador en derivación (shunt )
Siendo el generador shunt una maquina autoexitada, empezara a desarrollar su voltaje partiendo del magnetismo residual tan pronto como el inducido empiece a girar. Después a medida que el inducido va desarrollando voltaje este envía corriente a través del inductor aumentando él número de líneas de fuerza y desarrollando voltaje hasta su valor normal.
voltaje del generador shunt
Puesto que circuito inductor y el circuito de la carga están ambos conectados a través de los terminales de la dinamo, cualquier corriente engendrada en el inducido tiene que dividiese entre esas dos trayectorias en proporción inversa a sus resistencias y, puesto que la parte de la corriente pasa por el circuito inductor es relativamente elevada, la mayor parte de la corriente pasa por el circuito de la carga, impidiendo así el aumento de la intensidad del campo magnético esencial para producir el voltaje normal entre los terminales.
Características del voltaje del generador shunt.
El voltaje de un generador shunt variara en razón inversa de la carga, por la razón mencionada en el párrafo anterior. El aumento de la carga hace que aumente la caída de voltaje en el circuito de inducción, reduciendo así el voltaje aplicado al inductor, esto reduce la intensidad del campo magnético y por con siguiente , el voltaje del generador . Si se aumenta bruscamente la carga aplicada a un dinamo shunt la caída de voltaje puede ser bastante apreciable; mientras que si se suprime casi por entero la carga, la regulación de voltaje de una dinamo shunt es muy defectuosa debido a que su regulación no es inherente ni mantiene su voltaje constante.
Adaptan bien a trabajos fuertes, pero pueden emplearse para el alumbrado por medio de lámparas incandescentes o para alimentar otros aparatos de potencia constante en los que las variaciones de carga no sean demasiado pronunciadas.
El generador shunt funciona con dificultad en paralelo por que no se reparte por igual la carga entre ellas.
El generador con excitación shunt suministra energía eléctrica a una tensión aproximadamente constante, cualquiera que sea la carga, aunque no tan constante como en el caso del generador con excitación independiente. Cuando el circuito exterior está abierto, la máquina tiene excitación máxima porque toda la corriente producida se destina a la alimentación del circuito de excitación; por lo tanto, la tensión en bornes es máxima. Cuando el circuito exterior está cortocircuitado, casi toda la corriente producida pasa por el circuito del inducido y la excitación es mínima, la tensión disminuye rápidamente y la carga se anula. Por lo tanto, un cortocircuito en la línea no compromete la máquina, que se desexcita automáticamente, dejando de producir corriente. Esto es una ventaja sobre el generador de excitación independiente en donde un cortocircuito en línea puede producir graves averías en la máquina al no existir éste efecto de desexcitación automática.
Características del voltaje del generador shunt.
El voltaje de un generador shunt variara en razón inversa de la carga, por la razón mencionada en el párrafo anterior. El aumento de la carga hace que aumente la caída de voltaje en el circuito de inducción, reduciendo así el voltaje aplicado al inductor, esto reduce la intensidad del campo magnético y por con siguiente , el voltaje del generador . Si se aumenta bruscamente la carga aplicada a un dinamo shunt la caída de voltaje puede ser bastante apreciable; mientras que si se suprime casi por entero la carga, la regulación de voltaje de una dinamo shunt es muy defectuosa debido a que su regulación no es inherente ni mantiene su voltaje constante.
Adaptan bien a trabajos fuertes, pero pueden emplearse para el alumbrado por medio de lámparas incandescentes o para alimentar otros aparatos de potencia constante en los que las variaciones de carga no sean demasiado pronunciadas.
El generador shunt funciona con dificultad en paralelo por que no se reparte por igual la carga entre ellas.
El generador con excitación shunt suministra energía eléctrica a una tensión aproximadamente constante, cualquiera que sea la carga, aunque no tan constante como en el caso del generador con excitación independiente. Cuando el circuito exterior está abierto, la máquina tiene excitación máxima porque toda la corriente producida se destina a la alimentación del circuito de excitación; por lo tanto, la tensión en bornes es máxima. Cuando el circuito exterior está cortocircuitado, casi toda la corriente producida pasa por el circuito del inducido y la excitación es mínima, la tensión disminuye rápidamente y la carga se anula. Por lo tanto, un cortocircuito en la línea no compromete la máquina, que se desexcita automáticamente, dejando de producir corriente. Esto es una ventaja sobre el generador de excitación independiente en donde un cortocircuito en línea puede producir graves averías en la máquina al no existir éste efecto de desexcitación automática.
Respecto a los generadores de excitación independiente, los generadores shunt presentan el inconveniente de que no pueden excitarse si no están en movimiento, ya que la excitación procede de la misma máquina.
El circuito de excitación no lleva fusibles por las razones ya indicadas en el caso del generador de excitación independiente; en este circuito no es necesario un interruptor porque para excitar la máquina simplemente hay que ponerla en marcha y para desexcitarla no hay más que pararla. El amperímetro en el circuito de excitación puede también suprimirse, aunque resulta conveniente su instalación para comprobar si, por alguna avería, el generador absorbe una corriente de excitación distinta de la normal.
Cuando se dispone permanentemente de tensión en las barras especiales generales, muchas veces se prefiere tomar la corriente de excitación de éstas barras y no de las escobillas del generador, es decir, si al poner en marcha el generador hay tensión en las barras generales, la máquina se comporta como generador de excitación independiente; si no hay tensión, como generador shunt.
Para la puesta en marcha, debe cuidarse de que el interruptor general esté abierto y que el reóstato de campo tiene todas las resistencias intercaladas en el circuito. En estas condiciones, se pone en marcha la máquina motriz, aumentando paulatinamente su velocidad hasta que éste alcance su valor nominal, al mismo tiempo, aumenta la corriente de excitación y, por lo tanto, la tensión en los bornes del generador lo que indicará el voltímetro.
Si en la red no existen baterías de acumuladores, se acopla a ella el generador a una tensión algo inferior a la nominal; para conseguir esta tensión, se maniobra el reóstato de campo paulatinamente, quitando resistencias.
No resulta conveniente acoplar el generador a la red antes de excitarlo o a una tensión muy baja, porque si la resistencia exterior fuese muy baja (es decir, que la red estuviese en condiciones próximas al cortocircuito), la corriente de excitación sería muy pequeña e insuficiente para excitar la máquina.
Cuando se necesite detener el generador, se descargará, disminuyendo la excitación por medio del reóstato de campo teniendo cuidado de que las baterías no se descarguen sobre el generador y, por lo tanto, manteniendo siempre la tensión nominal. Si no hay baterías acopladas a la red, puede disminuirse la velocidad de la máquina motriz. En cuanto el amperímetro indique una intensidad de corriente nula o casi nula, se abre el interruptor principal, y se detiene la máquina motriz. Por efecto de la inercia, el gobernador seguirá girando durante algún tiempo y se desexcitará gradualmente; si hubiera necesidad de desexcitarlo rápidamente, se abrirá el circuito de excitación con las debidas precauciones y se frenará el volante de la máquina motriz.
Los generadores shunt se recomiendan cuando no haya cambios frecuentes y considerables de carga o bien cuando haya elementos compensadores, tales como generadores auxiliares, baterías de acumuladores, entre otros.
ARRANCADORES
Son necesarios los arrancadores para limitar la corriente de armadura que fluye cuando el motor se conecta. El arrancador se usa para llevar al motor a su velocidad normal y luego se retira del circuito. El aparato de control ajusta entonces la velocidad del motor según sea necesario.ARRANCADORES DE CONTACTO TRIPLE PARA MOTORES DE DERIVACION Y COMPOUND
El arrancador de tres puntos toma su nombre de las tres conexiones que deben efectuarse entre él y el motor al cual ha de arrancar.
El arrancador de contacto triple para motores de derivación que se ilustra es visible y se opera manualmente. El elemento resistor del reóstato se conecta en derivación por medio de seis botones de contacto. El brazo móvil del reóstato regresa a su primera posición mediante un resorte, y está dispuesto de manera que se puede mover de un botón de contacto a otro para puentear secciones del resistor en derivación.Después de cerrar el interruptor de línea, el operador coloca manualmente y mueve el brazo del reóstato de la posición de apagado al primer botón de contacto A. Este transmite todo el voltaje de la línea de alimentación al campo en derivación, energiza el imán de sujeción y conecta toda la resistencia de arranque en serie con la armadura. En la práctica, el valor de esta resistencia se selecciona de manera que limite la corriente de arranque a un 150% de la corriente nominal de la armadura a plena carga.
Cuando el motor comienza a ganar velocidad, el operador mueve gradualmente el brazo del reóstato hacia el contacto B, venciendo la tensión del resorte. En esta forma, la resistencia se va desconectando de la armadura y queda conectada en serie con el circuito de campo, donde prácticamente no tiene efecto, ya que su resistencia es mucho menor que la del campo y, así, no influye en la velocidad del motor ni en la intensidad del campo.
Cuando el brazo del arrancador de triple contacto está en B, la armadura queda conectada directamente a la línea de alimentación y se considera que el motor funciona a su velocidad normal. Entonces el imán de sujeción M, fija al brazo en la posición B, oponiéndose a la tensión del resorte y no permite que el brazo del reóstato regrese a la posición de apagado. Como el imán de sujeción está en serie con el campo en derivación, detecta cualesquiera variaciones que ocurran en el devanado del campo.
En el motor de derivación, al disminuir la intensidad del campo, la armadura tiende a acelerarse. Como es posible alcanzar un punto de desboque cuando la intensidad de campo se reduce demasiado el imán de sujeción está diseñado para desenergizarse hasta determinado valor de la corriente de campo. En este punto, el brazo unido al resorte regresa automáticamente a la posición de apagado. Esta misma disposición hace también que el brazo regrese a la posición de apagado cuando el voltaje de alimentación se interrumpe por alguna razón; en este caso será necesario que el operador repita el ciclo de arranque para hacer que el motor funcione otra vez, al restaurarse la energía en la línea.
El mismo arrancador de contacto triple que tiene el motor Shunt se puede usar en un motor compuesto acumulativo. La ilustración muestra que la única diferencia existente entre ambas posiciones está en el otro devanado de campo en serie del motor compuesto.

No hay comentarios:
Publicar un comentario